
Lingfeng Xiang,
Xingsheng Zhao, Jia Rao, Song Jiang, Hong Jiang

Characterizing the Performance of
Intel Optane Persistent Memory

-- A Close Look at its On-DIMM Buffering

The University of Texas at Arlington

Code: https://github.com/lingfenghsiang/Persistent-Memory-Study

https://github.com/lingfenghsiang/Persistent-Memory-Study

Intel Optane Persistent Memory (DCPMM)

• The first commercially available NVM DIMM

• Features

- Affordable large capacity, 3X cheaper than DRAM ($495 vs. $1,750 for 128 GB)

- Support for persistence

- Byte addressable, accessible via load/store instructions

- On memory bus, directly connected to the iMC via the DDR-T protocol

- 2-3X slower than DRAM

DCPMM Architecture

• Writes reaching the ADR domain are persistent

- ADR includes the WPQ and on-DIMM buffers

- eADR (G2 Optane) includes CPU caches

• On-DIMM buffers

- Read-modify-write (RMW) buffer

- Bridging the gap in access granularity (64B vs. 256B)

- Address indirection table (AIT) buffer

- Wear-leveling and bad block management

3D-Xpoint media

CPU Core
Register/Write buffer

Last level cache

L1 cache

L2 cache

WPQ

From CPU Queues

RMW Buffer AIT Buffer

DDR-T: 64B Cacheline

256B XPLine

ADR
Domain (G1)

eADR
Domain (G2)

Persistent Programming

• Persistence

- Writes reach the persistence (ADR) domain

- clflush, clwb, non-temporal store

• Write ordering

- Writes are persisted in program order

- mfence, sfence

• Update atomicity

- 8-byte write are guaranteed atomic by processor

- Use undo/redo logging or shadowing to guarantee atomicity for larger writes

DCPMM vs. DRAM

• Differences
- Access granularity (256B vs. 64B)

- DDR-T (asynchronous) vs. DDR4

(synchronous)

- Proprietary yet complex on-DIMM

read-write buffering

• Similarities

- Byte-addressable

- Allowing CPU caching

- Sharing the same memory

consistency model

VS.

Known Characteristics

• Write amplification

- Stores < 256B become RMW operations

- The RMW buffer merges adjacent writes and is 16KB in size

• Asymmetric read-write performance

- Read bandwidth is ~3x higher than write bandwidth

- Read latency is ~2x higher than write latency

• Performance strongly dependent on access pattern

- Sequential access is much faster than random access

[Yang, FAST’20], [Wang, MICRO’21], [Gugnani, VLDB’21]

Many Unknowns

• Read buffering vs. writing buffering

- Write buffering -- coalescing small writes

- Read buffering – potential data reuse

• On-DIMM buffering vs. CPU caching

• Performance implications of persistence barriers

• The evolution from G1 to G2 Optane

Methodology

• Metrics

- Write amplification (WA) =
𝑑𝑎𝑡𝑎 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑡𝑜 𝑚𝑒𝑑𝑖𝑎

𝑑𝑎𝑡𝑎 𝑖𝑠𝑠𝑢𝑒𝑑 𝑏𝑦 𝑖𝑀𝐶

- Read amplification (RA) =
𝑑𝑎𝑡𝑎 𝑟𝑒𝑎𝑑 𝑓𝑟𝑜𝑚𝑚𝑒𝑑𝑖𝑎

𝑑𝑎𝑡𝑎 𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑏𝑦 𝑖𝑀𝐶

• Platform

- G1 Optane: Intel Xeon Gold 6320 + 6* 128GB DCPMM + 192GB DRAM

- G2 Optane: Intel Xeon Gold 5317 + 6* 128GB DCPMM + 192GB DRAM

- NVM mounted to program address space using DAX mode in ext4

- Use ipmwatch to monitor data access to the media and iMC

Read Buffering

1 2 3 4 1 2 3 4 1 2 3 4 ···

Persistent memory address space

XPLine (256B)

• Read one cacheline each time with a stride of 256B

• Cachelines are immediately flushed from CPU caches after each access

• Two parameters: WSS and # of cachelines read per XPLine

Monitor RA as the benchmark repeatedly access a cacheline
and its sibling cachelines in the same XPLine to infer the size
of the read buffer and its management scheme

Read Buffering – cont’d
1. Read buffer is exclusive to the CPU cache

2. Cachelines not loaded by iMC are
cached in the on-DIMM read buffer

3. Read buffer size is 16KB in G1 Optane

Write Buffering

256B
element

256B
element

256B
element

…

• Sequentially or randomly ordered elements

• Partial or full writes to each element (XPLine)

• Writes are non-temporal stores that bypass the CPU caches

Monitor WA to infer the size of the write buffer
and its write-back policy

Write Buffering – cont’d

1. Full writes are periodically written back
to media

2. Partial writes are retained in the
write buffer until evicted

3. Periodic writeback is disabled in G2 Optane

The Relationship between Read and
Write Buffers

1 3 5 7 1 3 5 7 2 4 6 2 4 6… … … … …

Read region 16KB Write region 8KB

256B 256B256B256B

PM address

• Interleaved reads and write to two non-overlapping regions

• Cachelines invalidated after read and using nt-stores for writes

• Two baseline programs only accessing the read and write regions, respectively

Compare RA and WA with that in the baseline
programs to infer if the two buffers are a shared

space or separate

The Relationship between Read and
Write Buffers – cont’d

• Findings

- The benchmark with interleaved read and write has the same RA and WA as

the baseline programs do

- The WSS of the read and write region fits in the read and write buffer,

respectively, but their aggregate size overflows either buffer

• The read and write buffers are separate

• Reads can hit the write buffer and writes can

directly update XPLines in the read buffer

Prefetching

256B
element

256B
element

256B
element

…

• Randomly ordered elements

• Sequentially read within each element (XPLine) to trigger prefetching

Measure PM and iMC read ratio to infer CPU
cache and DCPMM prefetching activities

Prefetching – cont’d

• Most data prefetched to on-DIMM buffers are

due to CPU prefetching

• Cost of misprefetching is much higher in DCPMM

due to the mismatch in access granularity

CPU Caching vs. On-DIMM Buffering

256B
element

256B
element

256B
element…

Sequentially or randomly linked list

typedef struct working_set_unit
{

struct working_set_unit *next;
uint64_t pad[NPAD];

} working_set_unit_t;

padnext

Read (pointer chasing) Write (clwb or nt-store)

64B cacheline

To decouple read and write, store

element addresses in an array in DRAM

XPLine-size element

• Write-dominant workload
• Dereferencing is the only read to an element
• Read and write occur on different cachelines in an XPLine

Breaking Down Latency

List traversal via pointer chasing Decouple the latency of pointer chasing
(read) and the actual write

• Write: low latency due to write buffer hit and otherwise
consistent latency regardless of the WSS

• Read: CPU caching hides read latency until WSS exceeds LLC size

Hitting write buffer

WSS exceeds LLC size

Random read could dominate
performance !

Read After Persist (RAP)

64B 64B 64B 64B 64B 64B 64B 64B …

Reader Persist (nt-store/clwb + fence)

Distance

• Measure the latency of read to a recently persisted address

• Control the distance between the reader and persist

RAP Latency
1. Reading a recently persisted cacheline
suffers high latency

2. Read latency approaches to on-DIMM buffer
latency if sufficiently distant from persist

Memory fences only ensure persists are globally visible (i.e.,
reaching WPQ) but not necessarily completed

Takeaways

• Separate on-DIMM read and write buffers with distinct purposes

- Read buffer: aids prefetching and improves sequential performance

- Write buffer: hides media latency

• Various implications due to the mismatched cacheline and media access

granularity and the asynchronous DDR-T protocol

- Write amplification

- Increased misprefetching penalty

- Long RAP latency

Decouple read and write in performance analysis and optimizations

Rethinking the use of XPLine-aligned data blocks

Case Studies

• Cacheline-Conscious Extendible Hashing (CCEH) [Nam, FAST’19]

- Problem: 3 random reads (pointer dereference) to locate a hash table bucket before an update, a

performance bottleneck

- Optimization: A helper thread to speculatively prefetch pointer addresses

• FAST & FAIR B+-Tree [Hwang, FAST’18]

- Problem: Repeated read and write to the same cacheline during in-place key update in internal

nodes, causing long RAP latency

- Optimization: Redo logging to turn in-place updates to out-of-place updates

• XPLine-aligned workloads

- Problem: Misprefetching at the boundary of XPLines is especially expensive

- Optimization: Loading XPLines via SIMD instructions to avoid CPU prefetching

Conclusions

• A suite of carefully-designed microbenchmarks

- Infer the design of on-DIMM read and write buffers

- Discover interesting issues

- Random read dominating performance, RAP latency, misprefetching penalty

• Three case studies showing substantial performance improvements

• Discussions on

- G1 to G2 evolution, ADR vs. eADR, and programming guide

Questions?

lingfeng.xiang@mavs.uta.edu

https://github.com/lingfenghsiang/Persistent-Memory-Study

mailto:lingfeng.xiang@mavs.uta.edu
https://github.com/lingfenghsiang/Persistent-Memory-Study

